Teaching Social Skills to Children with Autism Using the Cool versus Not Cool Procedure

Autism Partnership and Behavior Therapy and Learning Center

Abstract: This study evaluated the effects of the cool versus not cool procedure for teaching three children diagnosed with an autism spectrum disorder eight social skills. The cool versus not cool procedure is a social discrimination program used to increase children’s ability to display appropriate social behaviors. In this study, the cool versus not cool procedure consisted of the participants observing the researcher demonstrating a social behavior either appropriately or inappropriately, followed by the participants discriminating whether the researcher demonstration was “cool” (appropriate) or “not cool” (inappropriate). For some social skills the participants role-played the social behavior following the researcher demonstration. Results indicated that participants reached mastery criterion on 50% of targeted social skills with the researcher demonstration and on an additional 37.5% of targeted social skills with researcher demonstrations plus role-plays. Only one participant on one social skill (12.5%) was unable to reach mastery criterion although performance increased from baseline.

Several behavior interventions have been implemented to increase the social behavior of children diagnosed with an autism spectrum disorder (ASD). These interventions have included: video modeling (e.g., Apple, Billingsley, & Schwartz, 2005, Charlop-Christy, Le, & Freeman, 2000), the teaching interaction procedure (e.g., Leaf et al., 2009; Leaf, Dotson, Oppenheim, Sheldon, & Sherman, 2010), discrete trial teaching (e.g., Leaf & McEachin, 1999; Lovaas, 1981, 1987), social stories (e.g., Theimann & Goldstein, 2001), and behavioral skills training (e.g., Stewart, Carr, & LeBlanc, 2007). Researchers have shown that these interventions can not only improve the social behavior of individuals diagnosed with an autism spectrum disorder but can also improve their overall quality of life (e.g., Bauminger & Kasari, 2000; Ladd, Birch, & Buhs, 1999; Stewart, Barnard, Pearson, Hasan, & O’Brien, 2006).

A common component of several of the above mentioned social skills interventions is the teacher demonstrating the appropriate behavior for the learner and/or the learner role-playing the appropriate social behavior with the teacher. For example, in video-modeling, the learner watches a videotape of oneself, a peer, or the teacher demonstrating the appropriate social behavior prior to practicing the social behavior with the teacher. Charlop and Milstein (1989) evaluated the effects of video-modeling for increasing conversational scripts for three young children diagnosed with autism. In this study, two adults modeled the appropriate conversational scripts, the learner watched a videotape of that model, and then the participant practiced the conversational scripts with the researcher. Charlop and Milstein utilized a multiple baseline design across the three participants and within participants across two different conversational scripts, to evaluate the effects of the video-modeling procedure. Results of the
study indicated that all participants were able to learn conversational scripts directly taught to them, maintained the conversational scripts during maintenance probes conducted 15-months after intervention, and generalized their conversational skills to different untrained conversational scripts.

Teacher demonstration and participant role-plays are also an important component of behavioral skills training (e.g., Stewart et al., 2007). In behavioral skills training the teacher labels the social behavior, describes how to perform the task analyzed steps of the social behavior, then models the social behavior prior to having the learner role-play the same behavior, followed by positive feedback for correct modeling of the targeted behavior. Hanley, Heal, Tiger, and Ingvarsson (2007) evaluated a class-wide pre-school teaching program that used behavioral skills training to decrease problem behavior and increase preschool life skills (e.g., responding to their name) for 16 preschool children. The behavioral skills training consisted of the researchers modeling the appropriate preschool life skill to the participants and then the participants demonstrating that skill. The researchers utilized a multiple probe design to evaluate the program. Results indicated that participants were able to reduce their problem behaviors by 74% and were able to learn the different preschool life skills that were directly taught to them.

The teaching interaction procedure is identical to behavioral skills training except for the addition of rationales. Rationales include reasons why the learner should engage in the social behavior and, sometimes, cues and characteristics for when the learner should engage in the social behavior. Like behavioral skills training, teacher demonstration and role-playing are a critical component of the teaching interaction procedure. Leaf and colleagues (2010) implemented the teaching interaction procedure in a group setting for five young children diagnosed with ASD. In this study, the researchers taught four different social skills (i.e., showing appreciation, giving a compliment, making an empathetic statement, and changing the game) to each of the five participants. The researchers demonstrated appropriate and inappropriate examples of each of the four social skills within the teaching interaction. Following the teacher demonstration, the researchers asked the participants to identify whether the social skill had been modeled appropriately or inappropriately and why the demonstration was appropriate or inappropriate. Next, the participants had the opportunity to role-play the social skill the appropriate way. Leaf and colleagues utilized a multiple probe design across skills and replicated across participants; the results showed that participants were able to learn and generalize the four social skills taught to them with the teaching interaction procedure.

Another procedure that utilizes teacher demonstration and can include participant role-play is the cool versus not cool procedure (Taubman, Leaf, & McEachin, 2011). The cool versus not cool procedure is a social discrimination program used to teach children and adolescents to discriminate between appropriate (“cool”) and inappropriate (“not cool”) social behaviors. During the cool versus not cool procedure a teacher demonstrates either a socially appropriate behavior (e.g., raising hand to gain teacher’s attention) or a socially inappropriate behavior (e.g., yelling out to gain teacher’s attention) and asks the learner to state whether the demonstrated behavior was “cool” (socially appropriate) or “not cool” (socially inappropriate). This is followed by the teacher asking the learner why that demonstration was “cool” or “not cool” and the teacher providing feedback to the learner for correct discrimination. After the teacher is done demonstrating the social skill, the learner typically has the opportunity to role-play the social skill appropriately followed by the teacher providing feedback for correctly role-playing the targeted social behavior.

Although the cool versus not cool procedure is similar to the above described behavioral interventions, there are variations. The cool versus not cool procedure varies from behavioral skills training and the teaching interaction procedure in that it does not provide a description of the behavior, a rationale of why the learner should engage in the behavior, and does not provide cues and characteristics about when the learner should display the appropriate social behavior. The cool versus not cool procedure varies from prior
research on video modeling in that all demonstrations are done in vivo, and that cool versus not cool involves discrimination training and not merely the modeling of appropriate alternatives. The cool versus not cool procedure has been clinically implemented with numerous children and adolescents diagnosed with ASD (Taubman et al., 2011); however, to date, there has been no empirical investigation on its effectiveness. Additionally, it is not known how effective the cool versus not cool procedure would be with just the teacher demonstration alone, without the addition of the learner role-play. The purpose of the current study was twofold: (1) to conduct the first empirical evaluation of the cool versus not cool discrimination procedure to children diagnosed with ASD and (2) to evaluate if children can learn a variety of social skills utilizing the cool versus not cool discrimination procedure alone or if it would additionally require implementation of role-play for the participants to learn the various social skills.

Method

Participants

Dante was a 9-year-old boy diagnosed with Autistic Disorder. Dante had a Wechsler Intelligence Scale for Children IV (WISC IV) Intelligence Quotient (IQ) score of 80, a Vineland Adaptive Composite Behavior Score of 90, a Social Skills Rating Score-Parent (SSRS-P) standard score of 116 (82nd percentile), and a Social Skills Rating Score-Teacher (SSRS-T) standard score of 105 (63rd percentile). Dante received 30 hours of behavioral intervention per week which included supporting him in his general education classroom.

Marc was an 8-year-old boy diagnosed with Autistic Disorder. Marc had a WISC IV Full IQ Score of 127, a Vineland Adaptive Score of 105, a Social Skills Improvement System (SSIS) Rating Scale (Parent) standard score of 95 (30th percentile), and a SSIS-Teacher standard score of 81 (10th percentile). Marc received 8.5 hours of behavioral intervention a week and attended general education classroom with supports.

Donald was a 4-year-old boy diagnosed with Autistic Disorder. Donald had a Wechsler Preschool and Primary Scales of Intelligence-Third Edition Full Scale IQ score of 88, a Vineland Adaptive Score of 77, a SSRS-P standard score of 104 (61st percentile), and a SSRS-T stand score of 102 (55th percentile). Donald received 35 hours of behavioral intervention per week and attended a general education classroom with supports.

Setting

The researchers conducted all research sessions in a room at a private behavioral agency’s clinic in Southern California. The agency provides behavior intervention services to children and adolescents diagnosed with ASD. The room contained toys, chairs, and other educational materials. Participants participated in research anywhere from one to five days per week. Each experimental session lasted approximately 60 min including probes and teaching.

Skills Taught

The researchers identified areas of social deficit for each participant by asking the participant’s clinical supervisor what social skills needed to be taught and through direct observations of the participant. The researchers identified two to three targets for each participant and either task analyzed the social skills into smaller behavioral components or operationally defined the skills. Table 1 provides information for each of the social skills taught to the three participants.

Measurement

The researchers measured each of the eight social skills during naturalistic probes. During naturalistic probes, the researchers simply engaged in a behavior that set the occasion for the participant to display one of the target social skills. For example, when measuring the social skill of changing the conversation when a person gets bored the researcher and participant would engage in a conversation and at some point the researcher would appear to be bored (e.g., looking away or looking at his or her watch) and see if the participant would change the conversation. The researchers did
not prime, prompt, reinforce, or provide consequences to the participants during naturalistic probes.

For the social skills that were task analyzed (i.e., interrupting appropriately, joint attention, changing the conversation, abduction avoidance, and changing the game), the participants had one opportunity to display the social skill per naturalistic probe. During the naturalistic probe, the researchers recorded whether the participant engaged or did not engage in each of the components of the task analysis for each skill.

For the social skill of appropriate greetings, Dante had five different opportunities to display the social skill during the naturalistic probe. During each one of these opportunities the researchers scored if Dante displayed the skill correctly or incorrectly. For Donald’s target of maintaining eye contact, a 10 s momentary time sampling procedure was implemented. During this probe the researcher engaged in a two-minute conversation and at the end of each 10 s interval the researcher scored if Donald was making eye contact. The researchers set mastery criterion for each of the social skills at 80% or above of the behavioral steps, opportunities, or intervals for three consecutive naturalistic probes.

Experimental Design and General Procedure

To evaluate the effectiveness of the cool versus not cool procedure, the researchers implemented a multiple baseline design across social skills and replicated it across participants. The research consisted of four distinct phases: an initial baseline, intervention, maintenance, and a booster session condition.

- **Initial baseline condition.** An initial baseline condition occurred prior to the teaching of any of the social skills for each participant. Each session in this condition began with the researcher implementing naturalistic probes for each of the social skills. The order of the naturalistic probes was randomly determined ahead of time. After all naturalistic probes were conducted, the participant resumed ongoing activity in his regular setting; an hour later the researcher pulled the participant out

TABLE 1.

Skills Taught

<table>
<thead>
<tr>
<th>Participant</th>
<th>Skill Taught</th>
<th>Operational Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dante</td>
<td>Interrupting</td>
<td>Wait for a break, say excuse me, state person’s name, say sorry for interrupting, state what they needed to say, and walk away.</td>
</tr>
<tr>
<td></td>
<td>Changing the game</td>
<td>Asked to play a different game when the other person looked bored, asked the person what new game they wanted to play, agreed to play it, got the materials needed, play the game, and refrain from any negative or rude comments.</td>
</tr>
<tr>
<td></td>
<td>Appropriate greetings</td>
<td>Made a general greeting statement, stated the person’s name, and asked a personal inquiring question.</td>
</tr>
<tr>
<td>Marc</td>
<td>Interrupting</td>
<td>Wait for a break, say excuse me, state person’s name, say sorry for interrupting, state what they needed to say, and walk away.</td>
</tr>
<tr>
<td></td>
<td>Joint attention</td>
<td>Stop engaging in preferred activity, look towards the person who made the comment, look in the direction the comment is being direct too, make a positive comment about what the other person was doing.</td>
</tr>
<tr>
<td></td>
<td>Changing the conversation</td>
<td>Changed the topic when the other person looked bored by making a comment about a different topic, wait for the person to respond, make a second comment about the new topic, wait for the person to respond.</td>
</tr>
<tr>
<td>Donald</td>
<td>Abduction prevention</td>
<td>Say no to the strangers request to go with them, make a statement that they do not know the person, did not follow the stranger, restate they will not go with the stranger, walk away from the stranger, tell the teacher about what just occurred.</td>
</tr>
<tr>
<td></td>
<td>Eye contact</td>
<td>The participant looked at the conversational partner in the eye or face at the 10 second interval.</td>
</tr>
</tbody>
</table>
of his regular setting and probed all of the social skills again.

Intervention condition. During the intervention condition, the researchers taught one of the social skills while the other two social skills were either in the baseline or maintenance condition. Each research session began with the researcher implementing naturalistic probes for the social skill that was in the intervention condition, the social skill(s) in the baseline condition, and during some research sessions the social skill(s) that were in maintenance. The order of the naturalistic probes was randomly determined ahead of time. A short break (5 to 30 min) followed the naturalistic probes. After the break, the researcher implemented the cool versus not cool procedure (described below) for the skill currently in intervention. Following the implementation of the cool versus not cool procedure, the researcher placed the participant back in his regular setting. During most days, at least an hour after the cool versus not cool procedure was implemented, the researcher again pulled the participant out of his regular setting and implemented naturalistic probes for the skill in the intervention condition, the skills in the baseline condition, and, during some research sessions, skill(s) that were in maintenance. The second set of naturalistic probes was occasionally not conducted due to daily scheduling issues.

Maintenance condition. Once a participant reached mastery criterion on a given social skill the researchers placed that social skill into maintenance. Once a skill was put on maintenance the researchers randomly probed the skill during various research sessions and the skill did not receive further intervention.

Booster session condition. The researchers implemented booster sessions for targeted skills that participants had reached mastery criterion during teaching or were displaying an average accuracy of 50% or less during maintenance. These skills were then placed in the booster condition. During booster sessions the researchers implemented naturalistic probes for each of the skills placed in the booster condition. If the participant displayed the social skill correctly during the naturalistic probe the researchers provided social praise to the participant. If the participant displayed the social skill incorrectly during the naturalistic probe the researchers provided corrective feedback and implemented the cool versus not cool procedure.

Teaching Procedures

Cool versus not cool discrimination procedure (teacher demonstration only). The teaching procedure consisted of six total teaching trials (three trials of the appropriate behavior and three trials of the inappropriate behavior). The order of each trial was randomly determined ahead of time. A trial began with the researcher demonstrating either the appropriate behavior or the inappropriate behavior. For example, if the researcher was demonstrating the appropriate version of changing the conversation when someone is bored, the researcher would talk to another teacher about a certain topic (e.g., shopping) and once that other teacher appeared bored (e.g., sighing, looking away, looking at his or her watch) the researcher would make a statement or ask a question about another unrelated topic (e.g., baseball). If, however, the researcher was demonstrating the inappropriate version, the researcher would continue talking about the original topic (e.g., shopping) even after the other teacher gave a signal (e.g., sighing, looking away, looking at his or her watch) that he or she was bored.

After the researcher demonstrated the behavior she asked the participant if the demonstration was “cool” (appropriate) or “not cool” (not appropriate). If the participant answered correctly the researcher provided social praise; however, if the participant answered incorrectly the researcher provided corrective feedback. Next, the researcher asked the participant why the demonstration was either “cool” or “not cool.” If the participant answered correctly the researcher provided social praise to the participant. If, however, the participant answered incorrectly the researcher provided corrective feedback and told the participant why the demonstration was appropriate or inappropriate.

Cool versus not cool procedure (teacher demonstration plus participant role-play). If after 10 naturalistic probes the participant had not reached mastery criterion or did not have a score of 80% or above on the 10th naturalistic
probe, the researchers implemented the cool versus not cool discrimination procedure plus role-playing. This phase was identical to the cool versus not cool procedure (described above) with one major addition, the participant role-playing the appropriate social behavior. After the six trials of researcher demonstration the participant role-played the social behavior. The role-plays consisted of the researcher telling the participant that it was his turn to practice the skill the “cool” way. Next, the researcher would engage in a behavior that set the occasion for the participant to display the social skill (similar to naturalistic probes). After the participant role-played the behavior the researcher asked the participant if they displayed the skill “cool” or “not cool” and why the performance was “cool” or “not cool.” If the participant role-played and answered the questions correctly, the researcher provided social praise. If the participant role-played incorrectly but answered the questions correctly, the researcher praised the participant for answering the questions correctly but had the participant role-play the behavior again. If the participant role-played incorrectly and answered the questions incorrectly the researcher provided corrective feedback and provided further explanation on why the demonstration was “cool” or “not cool.” Participants role-played until they were able to correctly role-play the behavior on two consecutive trials. Participants were never asked to role play an inappropriate version.

Reliability and Treatment Fidelity

The researcher scored participant behavior during all research sessions. A second researcher independently scored participant behaviors via videotape on 26% of naturalistic probes across the eight social skills. Interobserver agreement was calculated by totaling the number of times observers agreed on the scoring of each skill step or occurrence of the behavior divided by the total number of agreements and disagreements on scoring each skill step or occurrence of the behavior. This was converted to a percentage of agreement per each skill. Percentage agreement across all naturalistic probes was 96% (range, 71–100%).

To assess treatment fidelity, an independent observer recorded planned researcher behaviors during 25% of time when the researcher was implementing the teaching procedure. Planned researcher behaviors during the cool versus not cool procedure were the teacher: (a) demonstrating the behavior appropriately for three trials; (b) demonstrating the behavior inappropriately for three trials; (c) having the participant state whether the demonstration was “cool” or “not cool” during every trial; (d) having the participant state why the behavior was “cool” or “not cool”; and (e) having the participant role-play the social behavior when applicable. The independent observer scored that the researchers implemented the procedure correctly 100% of the time.

Results

Across the three participants a total of eight social skills were taught with the cool versus not cool discrimination procedure. Across the three participants, mastery criterion (i.e., 80% correct during three consecutive naturalistic probe sessions) was reached for 50% of the skills taught using the cool versus not cool procedure with teacher demonstration only and 37.5% of the social skills using the cool versus not cool procedure with role-plays. Only one social skill, for one participant, did not reach mastery criterion. Figures 1 to 3 show these results.

Dante reached mastery criterion for two social skills (i.e., interrupting appropriately and changing the game when someone was bored) with the cool versus not cool discrimination procedure alone and reached mastery criterion for one social skill (appropriate greetings) using the discrimination procedure plus role-plays (see Figure 1). Prior to intervention, Dante displayed an average of 0%, 0%, and 5.3% for interrupting appropriately, changing the game when someone was bored, and greetings, respectively. Dante reached mastery criterion in 11 naturalistic probes, 3 naturalistic probes, and 24 naturalistic probes for interrupting appropriately, changing the game when someone was bored, and greetings, respectively. During the assessment of maintenance on naturalistic probes, Dante maintained an average of 21%, 85%, and 60% of steps for interrupting, changing the game, and greetings, respectively. Since Dante’s
maintenance of interrupting appropriately was below 50%, a booster condition was implemented.

Marc reached mastery criterion for one social skill, interrupting appropriately, with the cool versus not cool discrimination procedure alone and reached mastery criterion for two skills, joint attention and changing the conversation when someone was bored, using the discrimination procedure plus role-plays (see Figure 2). Prior to intervention, Marc displayed an average of 0%, 5%, and 2% for interrupting appropriately, joint attention, and changing the conversation when someone was bored, respectively. Marc reached mastery criterion in 13 naturalistic probes, 25 naturalistic probes, and 15 naturalistic probes for interrupting appropriately, joint attention, and changing the conversation when bored, respectively. During the assessment of maintenance on naturalistic probes, Marc correctly performed an average of 50%, 75%, and 100% of steps for interrupting, joint attention, and changing the conversation when someone was bored, respectively. Since no skill dropped below
50% the booster condition was not implemented for Marc. Donald reached mastery criterion for one social skill, abduction avoidance, with the cool versus not cool discrimination procedure alone and did not reach mastery criterion for the other social skill, eye contact, even after the role-playing was implemented (see Figure 3). Although Donald did not reach mastery criterion for eye contact, he did increase his ability to display eye contact during naturalistic probes from an average of 18.7% during baseline to an average of 31% and 57.5% during the cool versus not cool discrimination procedure alone and the cool versus not cool discrimination procedure plus role-plays, respectively. Prior to intervention, Donald displayed an average of 0% for abduction avoidance. Donald reached mastery criterion in 12 naturalistic probes for that skill. During the
assessment of maintenance, on naturalistic probes, Donald maintained 72% and 63% of steps for abduction avoidance and eye contact respectively. Since the mastered skill did not fall below 50% during maintenance, the booster condition was not implemented for Donald.

Discussion

Results of this study indicated that participants were able to reach mastery criterion on four out of eight social skills with the cool versus not cool procedure. Participants required role-playing to reach mastery criterion for an additional three social skills targets, one participant, Donald, was unable to reach mastery criterion on one of his targets, even after role-playing was implemented. Thus, participants reached mastery criterion on 50% of the targeted social skills with the cool versus not cool procedure alone and participants reached mastery criterion on an additional 37.5% of social skills with the addition of role-playing.

Results of the study have several implications pertaining to instruction in the social area for children with ASD. Results of the study indicate that the cool versus not cool procedure may be an effective procedure when teaching social discrimination to children with ASD. The three social skills targets (i.e., interrupting, abduction prevention, and changing the game) that did reach mastery criterion with the cool versus not cool discrimination procedure alone were targets that required the participants to merely make a social discrimination such as “Is this person a stranger?”, “Is this person bored?”, or “Is this an appropriate time to interrupt?” as opposed...
to learning multi-step social interaction skills. Conversely, with the majority of those skills that did require multi-step interactional competencies (e.g., greetings and joint attention), the study illustrated that the combination cool versus not cool and role play procedure may be effective for teaching those skills.

Despite the positive findings in this study there were still limitations. One limitation of this study is the time it took participants to reach mastery criterion. Across all eight social skills it took participants a range of 3 to 24 probes to reach mastery criterion. However, conducting probes twice during a research session resulted in numerous probes being conducted prior to a skill reaching mastery and fewer teaching sessions being conducted. Additionally, the cool versus not cool procedure does fall in the range of efficiency of several other commonly implemented social skills interventions including: the teaching interaction procedure (e.g., Leaf et al., 2009, 2010), social stories (Kokina & Kern, 2010), and script fading (e.g., Stevenson, Krantz, & McClannahan, 2000).

A second limitation of this study is that one participant did not reach mastery criterion on one of his skills. Although this participant did not reach mastery criterion on one skill, this is also seen in other behavioral interventions (e.g., social stories and the teaching interaction procedure) (e.g., Kokina & Kern, 2010; Leaf et al., 2010). Future researchers should continue to evaluate the cool versus not cool procedure to determine the parameters of its effectiveness.

Even with the limitations of the current study there are several reasons why clinicians may choose to implement the cool versus not cool procedure. For one, the cool versus not cool procedure provides the learner the opportunity to observe both a correct demonstration and incorrect demonstration of the desired social skill. Having the learner observe the teacher demonstrating such contrasting alternatives may be beneficial as it allows the learner to view how he or she should display the desired behavior and how he or she may be displaying the social skill. This can be very helpful when the learner is not displaying the subtle nuances of a social skill.

A second reason why clinicians may choose to implement cool versus not cool is the flexibility of the procedure. In this study the researchers implemented the cool versus not cool with teacher demonstration alone for some skills and both teacher demonstration and participant role-play for other social skills; these are only two ways that the procedure can be implemented. Clinicians can implement the procedure as a matching program, a receptive program, or by having peers demonstrate the behavior.

A third reason why clinicians may choose to implement the cool versus not cool procedure is that it requires little to no materials to set up prior to teaching, unlike social stories, which require the clinician to write a story and create a book prior to intervention, or video-modeling, which requires the clinician to create videotapes prior to intervention. Though certainly involving planning, the cool versus not cool procedure does not require such extensive material development prior to teaching. Therefore, clinicians can implement the cool versus not cool procedure spontaneously.

Finally, clinicians can implement the cool versus not cool procedure prior to using other behavioral interventions (e.g., the teaching interaction procedure, video modeling, behavioral skills training) for social skills that need to be taught. If the skill entails a straightforward social discrimination, then there may be no need to implement the more labor intensive procedures. If, however, the learner is not able to learn the skill with just the cool versus not cool procedure, for example, with a multi-step interactional skill, then the cool versus not cool procedure may help expedite learning with the other behavioral interventions. Future researchers should evaluate whether implementation of the cool versus not cool procedure prior to the implementation of other behavioral interventions accelerates learning. Research should also examine if the cool versus not cool procedure alone is effective in addressing social skill needs beyond social discriminations.

This study found that the cool versus not cool procedure alone and in combination with role play was an effective intervention for improving the social behaviors of three young children diagnosed with ASD. Future researchers should continue to evaluate this procedure to determine how effective it is for other children and adolescents diagnosed with ASD.
with ASD, how effective it is when implemented in various instructional formats, the use of the combined demonstration and role play procedures with social interactional skills of a complexity greater than those examined in this study, and how effective, efficient, and preferred cool versus not cool is when compared to other commonly implemented social skills interventions (e.g., social stories, video modeling, script fading). In doing so clinicians may have a new effective procedure to implement when teaching social skills to children and adolescents diagnosed with ASD.

References

Received: 17 February 2011
Initial Acceptance: 15 April 2011
Final Acceptance: 17 May 2011